Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies. TACL 2016

Author: Tal Linzen, Emmanuel Dupoux, Yoav Goldberg Repoter: Yang Liu

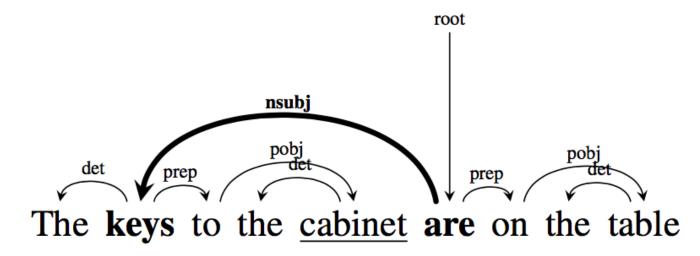
Motivation

word co-occurrence statistics (arbitrary number of words)

Sentence 1: Paris … France … . (more likely) Sentence 1: Penguins … France … .

	N-gram	RNN
fixed number of words	v	v
arbitrary number of words	×	v
syntactic structure of the sentence	×	?

Subject-Verb Agreement as Evidence for Syntactic Structure



- 2. The building on the far right that's quite old and run down is the Kilgore Bank Building.
- Alluvial soils carried in the <u>floodwaters</u> add nutrients to the floodplains.
 The length of the <u>forewings</u> is 12-13.
 Yet the ratio of <u>men</u> who survive to the <u>women</u> and <u>children</u> who survive is not clear in this story.

1.

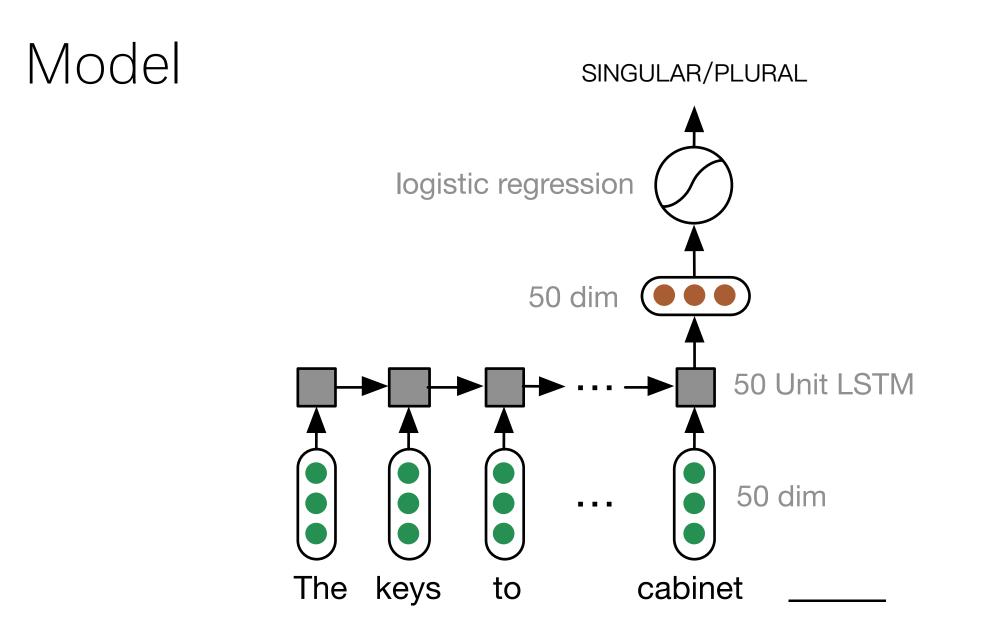
The Number Prediction Task

Given:The keys to the cabinet _____To Predict:PLURAL or SINGULAR

- Model syntactic number and syntactic subject-hood
- sensitivity to hierarchical syntax

Data

- generate practically **unlimited** training and testing examples
- based on Wikipedia
- ~1.35 million number prediction problems
- ~121,500 (9%) for training
- ~13,500 (1%) for validation
- ~1.21 million (90%) for test (enough for less common constructions)



Baseline (*noun-only baselines*)

- only receives common nouns (*dogs*, *pipe*)
- also receives pronouns (*he*) and proper nouns (*France*).

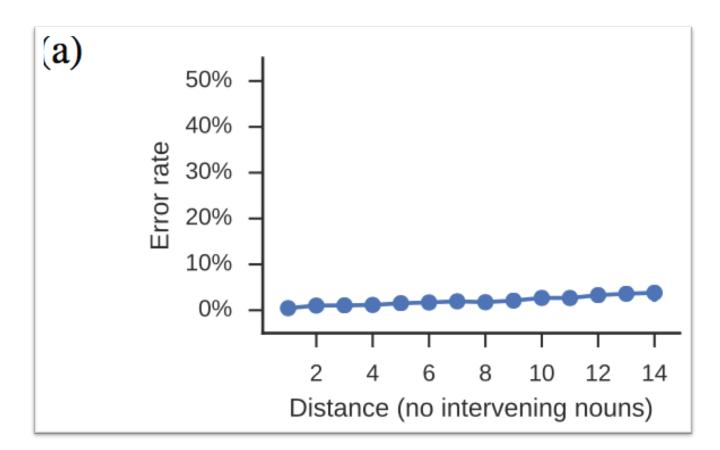
Results-Overall

	All-words	Common-nouns	All-nouns
Error	0.83%	4.2%	4.5%

How is the performance on more challenging dependencies?

Results-Distance

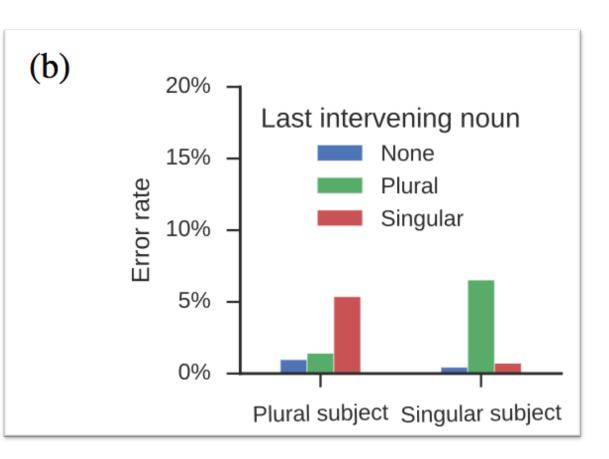
- no nouns intervened between the subject and the verb.
- the network generalized the dependency from the common distances of 0 and 1 to rare distances of 10 and more.



Results-Agreement attractors

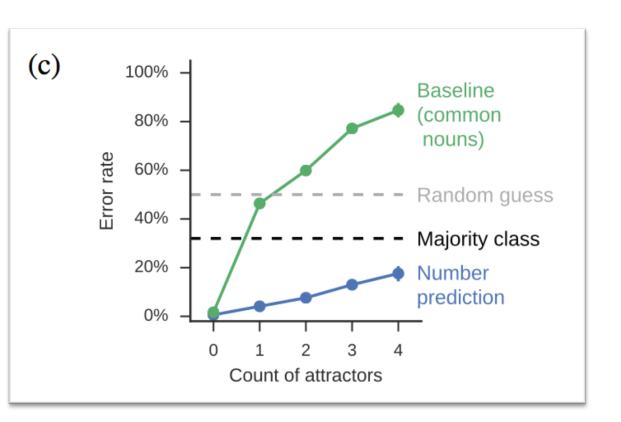
- Last intervening noun of the
 - same number +0.3-0.4%
 - differ number x10

- Baseline with error rates of
 - 46.4% (common nouns)
 - 40% (all nouns).



Results-Attractors' effect cumulative?

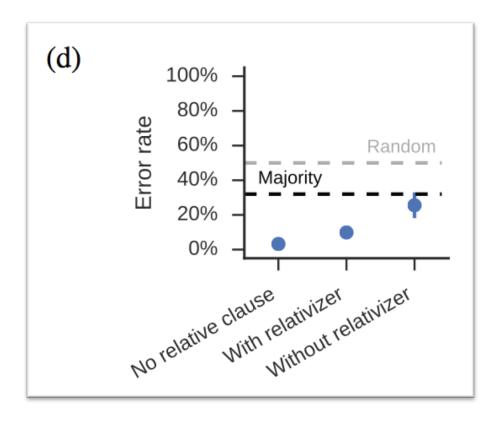
- *homogeneous intervention
 - The **roses** in the <u>vase</u> by the <u>door</u> are red.
 - The roses in the <u>vase</u> by the chairs are red.
- Attractors with number of
 - 4 word 17.6%
- Baseline with error rates of
 - 84% (common nouns)
- confirms that syntactic cues are critical



Results- Relative clauses

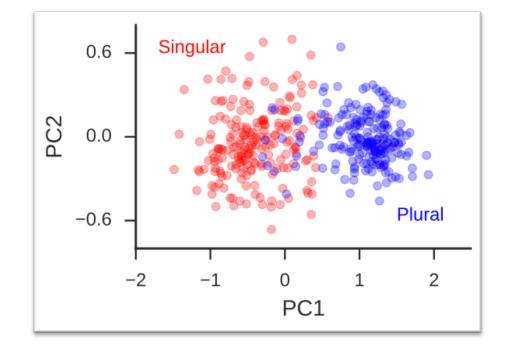
• E.g.

- The **landmarks** (that) this <u>article</u> lists here are also run-of-the-mill and not notable.
- Control only one attractor.
- No clauses 3.2%
- Clauses
 - With relativizer(that, which etc.) 9.9%
 - Without elativizer 25%



Results- Word representations

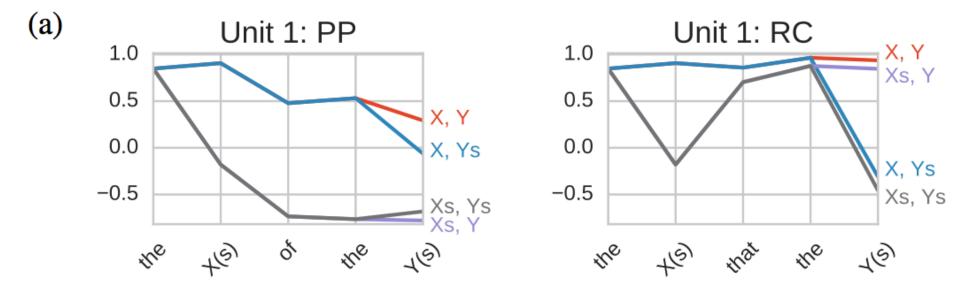
- PCA on Word-Embedding (50 dims)
- PC1 corresponded number of the noun
- Note that:
 - Model not have access to suffixes such as -s

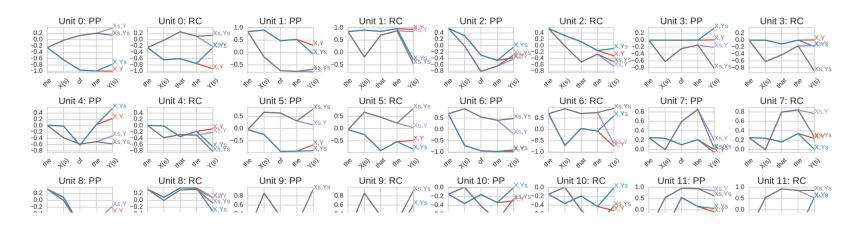


Results-Visualizing the network's activations

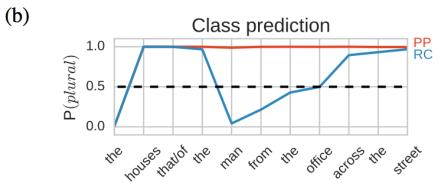
- Use constructed sentences simplify.
 - **PP:** The **toy(s)** of the boy(s)...
 - RC: The toy(s) that the **boy(s)**...
 - (2*2) * (10 diff. n-n relation) * (2 rc,pp)= 80

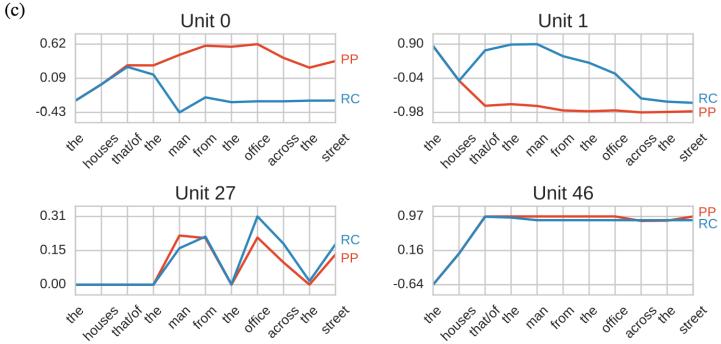
Results-Visualizing the network's activations





Results-Visualizing the network's activations





Alternative Training Objectives

Training objective	Sample input	Training signal	Prediction task	Correct answer
Number prediction	The keys to the cabinet	PLURAL	SINGULAR/PLURAL?	PLURAL
Verb inflection	The keys to the cabinet [is/are]	PLURAL	SINGULAR/PLURAL?	PLURAL
Grammaticality	The keys to the cabinet are here.	GRAMMATICAL	GRAMMATICAL/UNGRAMMATICAL?	GRAMMATICAL
Language model	The keys to the cabinet	are	P(are) > P(is)?	True

Verb inflection Task

Training objective	Sample input	Training signal	Prediction task	Correct answer
Number prediction	The keys to the cabinet	PLURAL	SINGULAR/PLURAL?	PLURAL
Verb inflection	The keys to the cabinet [is/are]	PLURAL	SINGULAR/PLURAL?	PLURAL
Grammaticality	The keys to the cabinet are here.	GRAMMATICAL	GRAMMATICAL/UNGRAMMATICAL?	GRAMMATICAL
Language model	The keys to the cabinet	are	P(are) > P(is)?	True

- Verb is known. ([be] in the example)
- Subject verb. Semantics information
 - Eg. **People** from the <u>capital</u> often eat pizza.
 - (only *people* is a plausible subject for *eat*)

Grammaticality judgments

Training objective	Sample input	Training signal	Prediction task	Correct answer
Number prediction	The keys to the cabinet	PLURAL	SINGULAR/PLURAL?	PLURAL
Verb inflection	The keys to the cabinet [is/are]	PLURAL	SINGULAR/PLURAL?	PLURAL
Grammaticality	The keys to the cabinet are here.	GRAMMATICAL	GRAMMATICAL/UNGRAMMATICAL?	GRAMMATICAL
Language model	The keys to the cabinet	are	P(are) > P(is)?	True

- Whole sentence is known.
- Verb position / syntactic clause boundaries

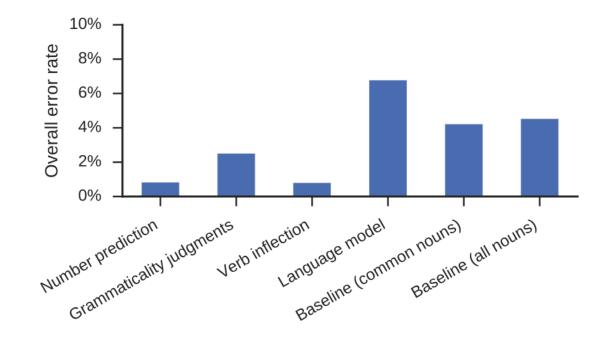
Language modeling (LM)

Training objective	Sample input	Training signal	Prediction task	Correct answer
Number prediction	The keys to the cabinet	PLURAL	SINGULAR/PLURAL?	PLURAL
Verb inflection	The keys to the cabinet [is/are]	PLURAL	SINGULAR/PLURAL?	PLURAL
Grammaticality	The keys to the cabinet are here.	GRAMMATICAL	GRAMMATICAL/UNGRAMMATICAL?	GRAMMATICAL
Language model	The keys to the cabinet	are	P(are) > P(is)?	True

- No grammatically relevant supervision
- Model:
 - WordEMB=>RNN=>activate=>fully connected layer=>softmax

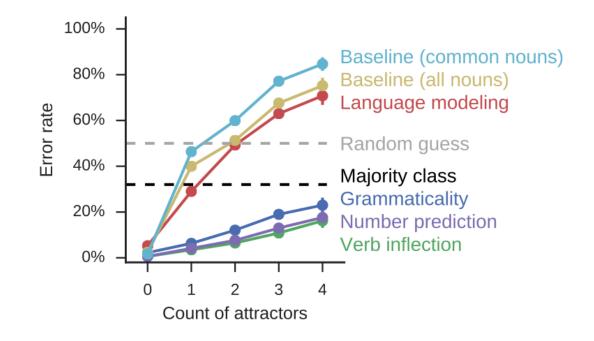
Alternative Training Objectives Results

- 1. verb semantics helps (0.8%=>0.83%)
- 2. Grammaticality judgments better than Baseline (show to learn syntactic dependencies)



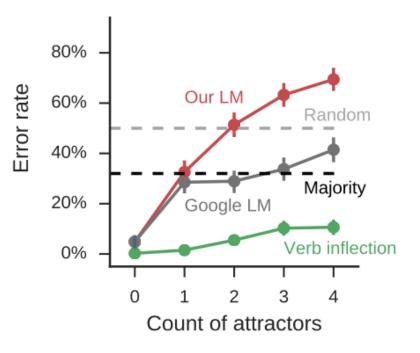
Alternative Training Objectives Results

- Grammaticality is more difficult
- Conclusion
 - LSTM is capable of learning syntaxsensitive agreement dependencies
 - the language-model alone is not sufficient for learning such dependencies



Alternative Training Objectives Results

- LM faced a much harder objective?
- Google LM.
 - vocabulary of 800,000 words
 - two-layer LSTM with 8192 units in each layer
 - 300 times as many units as our LM



Additional Experiments

- Comparison to simple recurrent networks
 - success of the network is due to the LSTM cells?
 - twice errors, not qualitative different.
- Training only on difficult dependencies

Error Analysis

- Singular vs. plural subjects
 - Violate prior probability experience when using SRN model
- Qualitative analysis
 - 1. n-n compounds. 2. v/n word. 3. hard to recognize subject

Conclusion

- LSTMs can learn to approximate structure-sensitive dependencies fairly well given explicit supervision
- more expressive architectures may be necessary to eliminate errors altogether.
- language modeling objective is not by itself sufficient for learning structuresensitive dependencies

Summary of the reporter

- Baseline model is ingenious.
- Homogeneous intervention. Variables control.
- Interpretability
- The whole work begin with the easy and efficiency function to build the large dataset.

