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Task

 semantic role labeling (SRL)

* recover the predicate-argument structure of a sentence, to determine
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essentially “who did what to whom™,“when”, and “where”
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Model (RNN)
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[ for layer indexes

t for timesteps



Model (RNN)

Highway Connections, Zhang et al., 2016;
Srivastava et al., 2015
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Model (RNN)

Recurrent Dropout, Gal and Ghahramani
(2016)
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Model (A%)
f(m)=gmn) +h*(n)

A*costw,y1.1) = fw,y1.) + gw, y41.)

flw,yre) = > logp(yi | w) 4> c(w,y1:4)
i=1

ceC

gw,y14) = Y max logp(y; | w)

BIO Constraints

* Such as Bypgo followed by I4z¢41s illegal
SRL Constraints (not use in PoE)

e Core roles (AO-Ab) appear once

* Continueation role exist only when its
base role realized before it

* Reference role. Same as above.(not use)

Syntactic Constraints
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Predicate |dentification (PI)

* bidirectional LSTM then softmax

* maximize the likelihood of the gold labels



Experiments Setting

* 8 LSTM layers (4 BILSTM layers)

* word tokens (lower-cased) initialized with 100-dimensional GloVe
embeddings (updated during trainning)

* Ensembling with 5-folds




Results on CoNLL 2005

Development WSJ Test Brown Test Combined
Method P R F1 Comp. P R F1 Comp. P R F1 Comp. F1
Ours (PoE) 83.1 824 827 641 850 843 846 665 749 724 73.6 46.5 83.2
Ours 81.6 81.6 81.6 623 83.1 830 831 643 729 714 721 448 81.6
Zhou 79.7 794 79.6 829 82.8 828 70.7 68.2 69.4 - 81.1

FitzGerald (Struct.,PoE) 81.2 76.7 789 55.1 825 782 803 573 745 700 722 413 -
Tackstrom (Struct.) 81.2 762 786 544 823 776 799 560 743 68.6 71.3 398 -
Toutanova (Ensemble) - - 78.6 58.7 819 78.8 803 60.1 - - 68.8 40.8 -
Punyakanok (Ensemble) 80.1 74.8 77.4 50.7 823 76.8 794 538 734 629 678 323 717.9

Table 1: Experimental results on CoNLL 2003, in terms of precision (P), recall (R), F1 and percentage of
completely correct predicates (Comp.). We report results of our best single and ensemble (PoE) model.
The comparison models are Zhou and Xu (2015), FitzGerald et al. (2015), Tackstrom et al. (2015),
Toutanova et al. (2008) and Punyakanok et al. (2008).



Results on CoNLL 2012

Development Test
Method P R F1 Comp. P R F1 Comp.
Ours (PoE) 83.5 83.2 83.4 67.5 83.5 83.3 83.4 68.5
Ours 81.8 8l.4 81.5 64.6 81.7 81.6 81.7 66.0
Zhou - 81.1 81.3

FitzGerald (Struct.,PoE) 81.0 78.5 79.7 60.9 81.2 79.0 80.1 62.6
Tackstrom (Struct.) 80.5 77.8 79.1 60.1 80.6 78.2 79.4 61.8
Pradhan (revised) - - - - 78.5 76.6 717.5 55.8

Table 2: Experimental results on CoNLL 2012 in the same metrics as above. We compare our best
single and ensemble (PoE) models against Zhou and Xu (2015), FitzGerald et al. (2015), Tackstrom
et al. (2015) and Pradhan et al. (2013).



Trainning
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End-to-end Results

Predicate Detection End-to-end SRL (Single) End-to-end SRL (PoE)
Dataset P R F1 P R F1 P R F1 A F1
CoNLL 2005 Dev. 974 974 97.4 80.3 80.4 80.3 81.8 81.2 81.5 -1.2
WSJ Test 945 98.5 96.4 80.2 82.3 81.2 82.0 83.4 82.7 -1.9
Brown Test 89.3 95.7 92.4 67.6 69.6 68.5 69.7 70.5 70.1 -3.5
CoNLL 2012 Dev. 88.7  90.6 89.7 74.9 76.2 75.5 76.5 77.8 77.2 -6.2
CoNLL 2012 Test 93.7 87.9 90.7 78.6 75.1 76.8 80.2 76.6 78.4 -5.0

Table 3: Predicate detection performance and end-to-end SRL results using predicted predicates. A F1
shows the absolute performance drop compared to our best ensemble model with gold predicates.



Analysis

* What I1s the model good at and what kinds of mistakes
does It make?

* How well do LSTMs model global structural consistency,
despite conditionally independent tagging decisions?

* |s our model implicitly learning syntax, and could
explicitly modeling syntax still help?



E rror Ty p ag B reg k d oOWwn Operation Description %

Correct the span label if its boundary 9.3

Fix Labels matches gold.
Move Arg. Move a unique core argument to its cor- , 5
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Table 4: Oracle transformations paired with the
relative error reduction after each operation. All
the operations are permitted only if they do not
cause any overlapping arguments.



Label Confusion

The model of- ten confuses ARG?2
with AM-DIR, AM-LOC and AM -
MNR. These confusions can arise
due to the use of ARG2 in many
verb frames to represent semantic
relations such as direction or
location.

For example, ARG2 in the frame
move.01 is defined as ArgZ2-GOL:
destination.

pred.\ gold A0 Al A2 A3 ADV DIR LOC MNR PNC TMP
AO - 11 13 4 0 0 0 0 O
AN - #4681 0 0 22 11 10 25 14

1

A2 11 23 - 8] 15 33 4 25 0
A3 3 2 2 - 4 0 0 0 25 14
ADV 0 0 0 4 - 0 15 29 25 36
DR 0 0 5 4 0 - 11 2 0 0
LOC 5 9 12 0 4 0 - 10 0 14
MNR 3 0 12 260337 0 0O 0 21
PNC 0 3 5 4 0 11 4 2 - 0
TMP 0 8 5 O 4N 11 26 6 0 -

Table 5: Confusion matrix for labeling errors,
showing the percentage of predicted labels for
each gold label. We only count predicted argu-
ments that match gold span boundaries.



Attachment Mistakes

Sumitomo financed the acquisition from Sears
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Figure 4: For cases where our model either splits
a gold span into two (Z — XY') or merges two
gold constituents (XY — Z), we show the distri-
bution of syntactic labels for the Y span. Results
show the major cause of these errors is inaccurate
prepositional phrase attachment.



Long-range Dependencies

* neural model performance deteriorates less

severely on long-range dependencies than & >
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Figure 5: F1 by surface distance between predi-
cates and arguments. Performance degrades least
rapidly on long-range arguments for the deeper
neural models.



BIO Violations

Using BIO-constrained decoding can resolve
ambiguity and result in a structurally consistent
solution.

Accuracy Violations Avg. Entropy
Model (no BIO) F1 Token BIO All BIO
L8+PoE 81.5 915 0.07 0.02 0.72
L8 80.5 90.9 0.07 0.02 0.73
L6 80.1 90.3 0.06 0.02 0.72
L4 79.1 90.2 0.08 0.02 0.70
L2 74.6 88.4 0.18 0.03 0.66

Table 6: Comparison of BiLSTM models without
BIO decoding. We compare F1 and token-level
accuracy (Token), averaged BIO violations per to-
ken (BIO), overall model entropy (All) model en-
tropy at tokens involved in BIO violations (BIO).
Increasing the depth of the model beyond 4 does
not produce more structurally consistent output,
emphasizing the need for constrained decoding.



SRL Structure Violations

God [N V i ARG2 [ ARG3
Housing starts | are expected to quicken |a bit || from August’s pace

Pred. m m m m
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Figure 6: Example where performance is hurt by
enforcing the constraint that core roles may only

occur once (+SRL).

SRL-Violations

Model or Oracle  F1 Syn % U C R
Gold 100.0 98.7 24 0 61
L8+PoE 82.7 943 37 3 68
L8 81.6 94.0 48 + 73
L6 814 93.7 39 3 85
L4 80.5 932 51 3 84
L2 772 913 96 5 72
L8+PoE+SRL 82.8 942 5 1 68
L8+PoE+AutoSyn 83.2 96.1 113 3 68
L8+PoE+GoldSyn 85.0 97.6 102 3 68
Punyakanok 774 953 0 0 0
Pradhan 783 93.0 84 3 58

Table 7: Comparison of models with different
depths and decoding constraints (in addition to
BIO) as well as two previous systems. We com-
pare F1, unlabeled agreement with gold con-
stituency (Syn%) and each type of SRL-constraint
violations (Unique core roles, Continuation roles
and Reference roles). Our best model produces a
similar number of constraint violations to the gold
annotation, explaining why deterministically en-

forcing these constraints is not helpful.



Can Syntax Still Help SRL?

* if the decoded sequence contains k
arguments that do not match any
unlabeled syntactic constituent, it will
receive a penalty of kC, where C isa
single parameter dictating how much
the model should trust the provided
syntax.

e (C =10000 on CoNLL 2005 and C =20
on CoNLL 2012

SRL-Violations

Model or Oracle = F1 Syn % U C R
Gold 100.0 98.7 24 0 61
L8+PoE 82.7 943 37 3 68
L8 81.6 94.0 48 4 73
L6 814 93.7 39 3 85
L4 80.5 93.2 51 3 84
L2 772 913 96 5 72
L8+PoE+SRL 82.8 94.2 5 1 68
L8+PoE+AutoSyn 83.2 96.1 113 3 68
L8+PoE+GoldSyn 85.0 97.6 102 3 68
Punyakanok 774 95.3 0 0 0

Pradhan 783 93.0 84 3 58

Table 7: Comparison of models with different
depths and decoding constraints (in addition to
BIO) as well as two previous systems. We com-
pare F1, unlabeled agreement with gold con-
stituency (Syn%) and each type of SRL-constraint
violations (Unique core roles, Continuation roles
and Reference roles). Our best model produces a
similar number of constraint violations to the gold
annotation, explaining why deterministically en-
forcing these constraints is not helpful.
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